

Stratford Extension Project Environmental Impact Statement

VALAVIVI

APPENDIX R

ENVIRONMENTAL RISK ASSESSMENT

On Thursday 28 June 2012, Yancoal Australia Limited was listed on the Australian Stock Exchange and merged with Gloucester Coal Ltd (GCL) under a scheme of agreement on the same date. Stratford Coal Pty Ltd is now a wholly owned subsidiary of Yancoal Australia Limited. Any reference to GCL in this Appendix should be read as Yancoal Australia Limited.

Stratford Extension Project

Environmental Risk Assessment

Prepared for:		Stratford Coal Pty Ltd	
Prepared by: Author:		Safe Production Solutions Dr Peter Standish	
Date of Team Review:		19 January 2012	
Job Number:		J4120	
Doc No:	D5738	Version: B	Date: 12/03/2012

Safe Production Solutions Pty. Ltd. ABN: 16 097 038 296 155 Birch Avenue Dubbo NSW 2830 NSW AUSTRALIA 2830

DOCUMENT CONTROL AND DISTRIBUTION

Document No.	D5738		
Title	Stratford Extension Project – Environmental Risk Assessment		
General Description	Report on the team based risk assessment		
Key Supporting Documentation	 AS/NZS ISO 31000:2009 Risk Management – Principles and Guidelines (Standards Australia/Standards New Zealand, 2009); UD 202:2006 Environmental Biele Management – Dringiales and Presson 		
	 HB 203:2006 Environmental Risk Management – Principles and Process (Standards Australia/Standards New Zealand, 2006); 		
	 MDG1010 Minerals Industry Safety and Health Risk Management Guideline (NSW DII, 2011); and 		
	Director-General's Requirements.		

Versions

Version	Date	Description	Created By	Reviewed
А	24/01/12	Draft report for internal review	PNS	JS
В	12/03/12	Updated draft to reflect team comments	PNS	JS

Distribution List of Latest Version

User	No. Copies
Resource Strategies	1 (Electronic)
SP Solutions	1 (Electronic)

TABLE OF CONTENTS

EXEC	CUTIVE SUMMARY	ES-1
1	INTRODUCTION	1
	1.1 Aim and Objectives	1
	1.2 Client	1
	1.3 Scope	3
	1.4 Clarifying Points	3
	1.5 Risk Assessment Process	3
	1.6 Resourcing, Schedule and Accountabilities	3
	1.7 Method	4
	1.7.1 Framework	4
	1.7.2 Key Steps	4
~	1.7.3 External Facilitation	5
2	ESTABLISH THE CONTEXT	6
	2.1 Organisational Context	6
	2.2 Project Summary	6
	2.3 Risk Management Context	8
_	2.4 Risk Criteria	9
3	IDENTIFY RISKS	10
	3.1 Overview	10
	3.2 ERA Team	10
	3.3 Risk Identification	11
	3.3.1 Brainstorming	11
	3.3.2 Modified HAZOP	11
	3.3.3 Identification of Key Environmental Issue Types	12
	3.3.4 Overview of Priorities by Study Area	14
4	ANALYSE RISKS	15
	4.1 Probability and Maximum Reasonable Consequence	15
	4.2 Risk Ranking	17
5	MONITOR AND REVIEW	22
	5.1 Nominated Co-ordinator	22
	5.2 Communication and Consultation	22
	5.3 Concluding Remarks	22
6	REFERENCES	24
List of	Figures	
Figure	1 Regional Location	2
Figure	2 Risk Management Process (AS/NZS ISO 31000:2009)	4
Figure	3 Project General Arrangement	7
Figure	4 Risk Criteria "ALARP"	9
Figure	5 Proportional Priorities by Study Area (ERA Team Assigned)	14
List of	Tables	
Table 1	1 ERA Team	10
Table 2	2 Key Potential Environmental Issues	12
Table 3	3 Qualitative Measures of Probability	15
Table 4	4 Qualitative Measures of Maximum Reasonable Consequence	15
Table 5	5 Quantitative Measures of Maximum Reasonable Consequence	16
Table 6	6 Risk Ranking Table	16
Table 7	7 Risk Ranking Results	17
Table 8	8 Key Potential Environmental Issues to be Further Assessed in the EIS	22
List of	Attachments	

Attachment A	Definitions
Attachment B	Issue Identification Results

EXECUTIVE SUMMARY

This document is an Environmental Risk Assessment (ERA) which identifies risks associated with key potential environmental issues associated with the Stratford Extension Project (the Project). The Project is an extension of the existing Stratford Coal Mine and Bowens Road North Open Cut, referred to collectively as the Stratford Mining Complex.

On 19 January 2012, a team consisting of Stratford Coal Pty Ltd (SCPL) personnel and specialist consultants participated in a facilitated ERA workshop. The scope of the workshop was:

To conduct a risk assessment of the potential environmental impacts of the project, identifying the key issues for further assessment.

The ERA workshop included:

- 1. Establishing the context, including review of supporting information and objectives.
- 2. Identifying risks via a number of risk management techniques, including:
 - a. brainstorming;
 - b. modified hazard and operability analysis; and
 - c. keyword (loss generation) techniques.
- 3. Analysis of identified risks and nomination of key potential environmental issues.
- 4. Ranking of the risks, including consideration of mitigation measures.

Key Potential Environmental Issues

Key potential environmental issues were identified by the ERA team using a voting system, whereby team members were assigned a number of 'votes' to their key issues. The key potential environmental issues identified by the ERA team (**Table ES-1**) were considered to be key issues for further assessment in the Environmental Impact Statement (EIS). The key potential environmental issues identified in the ERA will be addressed in the EIS, and its supporting specialists reports included as appendices to the EIS:

- Appendix A Groundwater Assessment.
- Appendix B Surface Water Assessment.
- Appendix C Noise and Blasting Assessment.
- Appendix D Air Quality and Greenhouse Gas Assessment.
- Appendix E Flora Assessment.
- Appendix F Terrestrial Fauna Assessment.
- Appendix G Aquatic Ecology Assessment.
- Appendix H EPBC Act Controlling Provisions.
- Appendix I Aboriginal Cultural Heritage Assessment.
- Appendix J Non-Aboriginal Heritage Assessment.
- Appendix K Agricultural Assessment.
- Appendix L Geochemistry Assessment.
- Appendix M Land Contamination Assessment.
- Appendix N Road Traffic Assessment.
- Appendix O Visual Assessment.
- Appendix P Socio-Economic Assessment.
- Appendix Q Preliminary Hazard Analysis.

Table ES-1 - Key Potential Environmental Issues to be Further Assessed in the EIS

Pof	Subject Area	Issue Identified	EIS Appondix/Section
SX019	Groundwater	Potential cumulative groundwater impacts as a result	Appendix A and Section A
37019	Groundwater	of the AGL Gloucester LE Pty Ltd (AGL) Gloucester Gas	Appendix A and Section 4
		Project, proposed Rocky Hill Coal Project and the	
		Project.	
SX020	Groundwater	Final void water management and development of	Appendix A and Section 4
		groundwater sinks in the long-term.	
SX072	Groundwater	Potential groundwater related impacts (e.g. baseflow	Appendix A and Section 4
		loss) on Dog Trap Creek, Avondale Creek and	
		associated alluvium.	
SX085	Groundwater	Potential reduction in yield in surrounding landholder	Appendix A and Section 4
		bores (e.g. Stratford) resulting from the Project.	
SX072A	Groundwater	Potential leakage of stored mine water in the	Appendix A and Section 4
		Stratford East Dam through underlying coal seams to	
		Stratford East Open Cut – resulting in higher	
		groundwater inflows requiring management.	
SX007	Surface Water	Potential for long-term spill of water with elevated	Appendix B and Section 4
		salinity from final voids.	
SX008	Surface Water	Long-term stability of upslope permanent diversions.	Appendix B and Section 4
SX009	Surface Water	Long-term stability of unnamed tributary to Avondale	Appendix B and Section 4
		Creek.	
SX014	Surface Water	Design of post-mine landform water management to	Appendix B and Section 4
		diversions	
CV010	Curfe en Mater	Giversions.	Annondiu Dond Contion 4
37018	Surface water	Site water balance and management of surplus mine	Appendix B and Section 4
52024	Noico	Retential for intrusive poice and clean disturbance	Appendix C and Section 4
37024	noise	impacts on some receivers including dwellings	Appendix c and Section 4
		schools a church and recreational areas resulting	
		from Project operations.	
SX026	Noise	Noise amenity and sleep disturbance impacts on near-	Appendix C and Section 4
		by receivers from Project road and rail operations	P.F
		during daytime, evening and night-time.	
SX089	Noise	Operational requirement for additional fixed and	Appendix C and Section 4
		mobile plant - leading to additional noise impacts.	
SX101	Noise	Noise performance and non-compliance with noise	Appendix C and Section 4
		criteria during Project operations.	
SX030	Air Quality	Increased emissions of PM ₁₀ /PM _{2.5} /total suspended	Appendix D and Section 4
		particles (TSP)/dust deposition from the Project	
		resulting in the potential for increase in predicted	
		impact (health and amenity) at residential receivers.	-
SX031	Air Quality	Potential for increase in cumulative impact associated	Appendix D and Section 4
		with the Project, proposed Rocky Hill Coal Project and	
62022	Also Quality	the AGL Gloucester Gas Project.	Anne and in Deced Creation 4
SX032	Air Quality	Heightened community concern regarding health	Appendix D and Section 4
		impacts	
52084	Air Quality	Potential for an increase in dust and aerial	Annendix D and Section 4
37084	All Quality	contaminants on Stratford homes resulting in	Appendix D and Section 4
		contamination of their tank water supplies.	
SX091	Air Quality	Changes in the air quality effects between modelled	Appendix D and Section 4
		and actual levels experienced (due to conservative	
		assumptions in modelling).	
SX038	Flora & Fauna	Potential for loss of terrestrial flora and fauna and	Appendices E and F and
		their habitat - other species (non-threatened).	Section 4
SX039	Flora & Fauna	Fragmentation of habitats impacting movement of	Appendix F and Section 4
		fauna.	

Printed: 6/06/12 Page ES-2

Table ES-1 – Key Potential Environmental Issues to be Further Assessed in the EIS (Continued)

Ref	Subject Area	Issue Identified	FIS Appendix/Section
SX040	Flora & Fauna	Potential impacts on threatened fauna species (Squirrel Glider, Glossy Black-cockatoo and New Holland Mouse).	Appendix F and Section 4
SX044	Flora & Fauna	Failure of revegetation and/or habitat enhancement in the offset area or biodiversity enhancement areas.	Appendices E and F and Section 4
SX047	Flora & Fauna (Aquatic Ecology)	Potential change in flow persistence in Avondale Creek, Dog Trap Creek and/or Avon River leading to adverse aquatic ecology impacts.	Appendix G and Section 4
SX068	Aboriginal/Non- Aboriginal Heritage	Potential indirect impacts on potential cultural site CTS-1.	Appendix I and Section 4
SX051	Socio-Economic	Potential impacts on amenity (effects on tourism, loss of farming land, proximity to Stratford), water quality (environmental), noise, air quality, health and transport.	Appendix P and Section 4
SX043	Rehabilitation/ Closure	Potential for failure of revegetation and/or habitat enhancement on post-mine landforms.	Section 5
SX083	Rehabilitation/ Closure	Geotechnical issues related to the Roseville West Pit Extension (where excavating through reject material).	Section 5
SX062A	Rehabilitation/ Closure	Long-term stability and rehabilitation of coal handling and preparation plant (CHPP) rejects deposited in the co-disposal areas.	Section 5

Risk Ranking

Risk ranking was undertaken by the team on loss scenarios, based on a subset of the key potential environmental issues (**Table ES-1**). A summary of the risk ranking results is presented in **Table ES-2**.

With the consideration of potential controls, all of the potential loss scenarios were ranked within the 'Medium - As Low As Reasonably Practicable' or the 'Low' range by the ERA team.

		5	1
Study Area	Issue	Ranking Basis/Unwanted Event	Risk
	Potential cumulative	Considered the potential for groundwater	
	groundwater impacts as	depressurisation/drawdown and impact on surrounding	
	a result of the AGI	groundwater users Risk considered both with and	
	Cloucester Gas Project	without AGL Gloucester Gas Project and proposed Pocky	
	Gloucester Gas Project,		
	proposed Rocky Hill Coal	Hill Coal Project and cumulative scenario assumed that	14 Medium
	Project and the Project.	AGL wells would be installed between Roseville West Pit	(cumulative)
		Extension and Stratford concurrent with Roseville West Pit	
		Extension mining.	18 Low
			(SCPL only)
Groundwater		Mitigation discussion noted that the timing/sequence of	· "
		the other operations to occur concurrently is not certain	
		the other operations to occur concidered on an SCDL only	
		Dasis.	
	Final void water	Considered the potential for surface water spills from final	
	management and	voids due to reporting catchment and pit inflows.	
	development of		
	groundwater sinks in	Mitigated by design of yoid to be a groundwater sink in	
	the long-term	the long-term e.g. reduction of size of final void by	22 Low
	the long term.	nartially backfilling completed ait with waste rock	22 1000
		partially backfilling completed pit with waste rock,	
		minimisation of surface water catchment reporting to final	
		void and final void water balance indicating that spills are	
		unlikely.	

Table ES-2 – Risk Ranking

Study Area	Issue	Ranking Basis/Unwanted Event	Risk ¹
	Potential groundwater	Considered the depressurisation of underlying coal	
	related impacts (e.g.	measures and potential for reduction of flows in Dog Tran	10 Medium
	haseflow loss) on Dog	Creek and Avondale Creek from removal of alluvium with	(Dog Trap
	Tran Creek Avondale	contained water and notential impacts on baseflow	(Dog Hup (reek)
	Creek and associated	contained water and potential impacts on basenow.	ciccity
	alluvium	Dog Tran and Avondale Creeks considered senarately	15 Medium
			(Avondale
		Mitigated by avoidance of mining within Dog Tran Creek	(Avolidaic Creek)
		alluvium and recovery of groundwater levels nost-mining	creeky
	Potential reduction in		
	viold in surrounding	Considered the potential for reduced yield/access to water	
Groundwater	Jandhaldar baras (a.g.	for surrounding landholders including Stratford bores as a	19 000
(Continued)	Stratford) resulting from	result of groundwater depressurisation/drawdown	10 LOW
	the Project	(Project-only).	
	Detential leakage of		
	stored mine water in	Concidered potential for lookage of water from Stratford	
	the Stratford East Dam	East Dam to the Stratford East Open Cut during mining	
	the stration Last Dam	constant to the stration Last Open Cut during mining	
	coome to Stratford East	operations.	25 1 0 1/
	Ω_{pop} Ω_{tot} $-$ resulting in	Mitigated by limited potential for environmental impact as	25 1000
	higher groundwater	any water would be collected in mine water system and	
	inflows requiring	managed accordingly	
	management	managed accordingly.	
	Potential for long-term	Considered the notential for long-term saline contaminant	
	spill of water with	migration to downstream waterways and consequent	23 Low
	elevated salinity from	impacts on downstream water users and ecology. This	(surface
	final voids	could occur if the void does not act as a localised	water users)
		groundwater sink	
		Broundwater sink.	20 Low
		Risks considered separately for surface water users and	(aquatic
		aquatic ecology	ecology)
	Long-term stability of	Considered the notential for stability issues associated	
	unnamed tributary to	with an unnamed tributary of Avondale Creek, when water	
	Avondale Creek	is temporarily diverted into it as part of the unslope water	
		diversion system	
			25 Low
		Mitigated by the progressive development of upslope	
		diversions (and reporting catchment), short-term and	
		localised impacts (whilst upslope water is being diverted	
Surface Water		there during operations).	
	Design of post-mine	Considered long-term sediment/contaminant migration to	21 Low
	landform water	downstream waterways and consequent impact on	(surface
	management to be	downstream water users and ecology. A failure of the	water users)
	stable in the long-term,	landform could potentially cause these losses to occur.	
	including upslope		17 Low
	diversions.	Risks considered separately for surface water users and	(aquatic
		aquatic ecology.	ecology)
	Site water balance and	Considered the potential for an uncontrolled discharge of	
	management of surplus	mine water.	
	mine water on-site to		23 Low
	achieve zero discharge	Mitigated by site water management system design and	(surface
	of mine water.	implementation (i.e. minimise disturbed catchment;	water users/
		progressive rehabilitation resulting in free-draining	aquatic
		landforms; expansion of dust suppression use and	ecology)
		irrigation on contained catchments; use of pit voids and	
		disruption to mine operations [operational risk]).	

Table ES-2 – Risk Ranking (Continued)

Study Area	Issue	Ranking Basis/Unwanted Event	Risk ¹
·	Potential for intrusive	Considered exceedances of criteria leading to a significant	
	noise and sleep	loss of amenity amongst receivers.	
	disturbance impacts on		
	some receivers including	Mitigated by use of noise attenuated fleet items, bunding	14 Medium
	dwellings, schools, a	of on-site haul roads and rail operations, and operation of	14 Wealani
	church and recreational	a real-time noise monitoring system.	
	areas resulting from		
Noise	Project operations.		
	Noise amenity and sleep	Considered potential for additional rail noise impacts.	
	disturbance impacts on	Mitigated by minimal additional train movements for the	
	Project road and rail	Project (i.e. one additional neak rail movement per day)	14 Medium
	operations during	roject (i.e. one additional peak rail movement per day).	14 Wealani
	davtime, evening and		
	night-time.		
	Increased emissions of	Considered the potential for exceedance of criteria leading	
	PM ₁₀ /PM _{2.5} /TSP/dust	to loss of amenity and health impacts amongst receivers.	
	deposition from the		
	Project resulting in the	Mitigated by air quality mitigation measures (including	14 Medium
	potential for increase in	additional watering) to minimise predicted air quality	14 Wealani
	predicted impact	impacts.	
	(health and amenity) at		
	residential receivers.		
	Potential for increase in	Considered the increased potential for cumulative	
	cumulative impact	inipacis.	
Air Quality	Project proposed Rocky	Mitigated by distance between proposed operations and	21 Low
	Hill Coal Project and the	orientation of the operations relative to each other limits	
	AGL Gloucester Gas	potential for cumulative impacts.	
	Project.		
	Potential for an increase	Considered the possibility of contamination of residential	
	in dust and aerial	water supplies sourced from household tanks.	
	contaminants on		
	Stratford homes	Mitigated by relatively low contribution of air pollutants	25 Low
	resulting in	by the mine and findings of a range of scientific studies	
	contamination of their	including a local Gloucester Shire Council study.	
	Potential for loss of	Considered the notential loss of a local nonulation (non-	
	terrestrial flora and	threatened fauna) and their habitats.	
	fauna and their habitat -		23 Low
	other species (non-	Mitigated by minimisation of disturbance areas, Flora and	
	threatened)	Fauna Management Plan and Project offset outcomes.	
	Fragmentation of	Considered the potential for increased isolation of habitat	
	habitats impacting	due to Project-related clearing, leading to a decrease in	
	movement of fauna.	habitat connectivity and therefore the potential for a	
Flora & Fauna		decrease in fauna diversity.	18 Low
		Mitigated by minimisation of disturbance areas, Flora and	
	Potontial impacts on	Fauna Management Plan and Project Offset.	
	threatened fauna	(threatened fauna)	
	species (Squirrel Glider		
	Glossy Black-cockatoo	Mitigated by minimisation of disturbance areas. Flora and	17 Low
	and New Holland	Fauna Management Plan and Project offset.	
	Mouse).		

Table ES-2 – Risk Ranking (Continued)

Study Area	Issue	Ranking Basis/Unwanted Event	Risk ¹
Flora & Fauna (Continued)	Failure of revegetation and/or habitat enhancement in the offset area or biodiversity enhancement areas.	Considered the potential for failure of biodiversity enhancement in offset areas. Considered with monitoring of rehabilitation progress and implementation of remedial measures in place.	21 Low
	Potential change in flow persistence in Avondale Creek, Dog Trap Creek and/or Avon River leading to adverse aquatic ecology impacts.	Considered the potential for changes in flow regimes in Avondale Creek, Dog Trap Creek and/or Avon River resulting in adverse impacts on aquatic ecology. Mitigated by implementation of upslope diversion system and progressive rehabilitation to minimise catchment excision over the life of the Project.	15 Medium (Avondale Creek) 25 Low (Avon River) 22 Low (Dog Trap Creek)
Aboriginal/Non- Aboriginal Heritage	Potential indirect impacts on potential cultural site CTS-1.	Considered the potential for damage to potential cultural site CTS-1 due to proximate mining activities. Mitigated by the isolation of the area, therefore avoiding any direct impacts, and that predicted blast vibration levels are likely to be below relevant criteria.	21 Low
	Potential for failure of revegetation and/or habitat enhancement on post-mine landforms.	Considered the potential for failure of revegetation and/or habitat enhancement on post-mine landforms, and failure to establish biodiversity in areas rehabilitated to woodland. Mitigated by past successful rehabilitation practices and appropriate future rehabilitation planning.	17 Low
Rehabilitation/ Closure	Geotechnical issues related to the Roseville West Pit Extension (where excavating through reject material).	Considered the challenges of rehabilitating exposed rejects in the low wall of the Roseville West Pit Extension, potentially resulting in an unstable final landform and failure of old Roseville Pit. Mitigated by geotechnical considerations incorporated into final pit design.	21 Low
	Long-term stability and rehabilitation of CHPP rejects deposited in the co-disposal areas.	Considered the potential for stability and rehabilitation success of rehabilitation of areas above CHPP rejects emplacements. Mitigated by placement of rejects below the groundwater table level and placement of waste rock on top of rejects material.	22 Low

Table ES-2 – Risk Ranking (Continued)

Risk - Ranking basis 1 (highest risk) to 25 (lowest risk). Risk rankings defined as 1 to 6 – High; 7 to 15 - Medium (or ALARP) and 16 to 25 - Low.

1 INTRODUCTION

This document is an Environmental Risk Assessment (ERA) which identifies risks associated with key potential environmental issues associated with the Stratford Extension Project (the Project). The Project is an extension of the existing Stratford Coal Mine (SCM) and Bowens Road North Open Cut (BRNOC), referred to collectively as the Stratford Mining Complex.

Stratford Coal Pty Ltd (SCPL) is the owner and operator of the Stratford Mining Complex. SCPL is a wholly owned subsidiary of Gloucester Coal Ltd. The Stratford Mining Complex is located approximately 10 kilometres (km) south of Gloucester and 100 km north of Newcastle in New South Wales (NSW) (Figure 1). Another Gloucester Coal Ltd subsidiary, Duralie Coal Pty Ltd, owns and operates the Duralie Coal Mine (DCM), which is located some 20 km to the south of the Stratford Mining Complex.

The Project would be an extension of the Stratford Mining Complex and would involve open cut mining at a rate of up to 2.6 million tonnes per annum (Mtpa). It would also require the development of supporting infrastructure and modifications to some existing infrastructure. A description of the Project is provided in Section 2 in the Main Report of the Environmental Impact Statement (EIS).

1.1 AIM AND OBJECTIVES

The aim of the ERA workshop was:

To identify key potential environmental issues for further assessment in the Environmental Impact Statement.

The primary objectives of this ERA were to:

- 1. identify the key potential environmental issues associated with the Project; and
- 2. assess the level of risk for a selection of potential loss scenarios associated with the key potential environmental issues.

The ERA team identified the following items as desired outcomes from the process:

- 1. identification of key potential environmental issues to be further assessed in the EIS; and
- a document suitable for inclusion in the EIS and prepared in accordance with Australian Standard/New Zealand Standard (AS/NZS) ISO 31000:2009 Risk Management – Principles and Guidelines (Standards Australia/Standards New Zealand, 2009).

A list of key words and their definitions is provided in Attachment A.

1.2 CLIENT

The client for the ERA is SCPL.

1.3 SCOPE

The Director-General's Requirements (DGRs) for the Project stipulate:

... the EIS must include a:

• risk assessment of the potential environmental impacts of the development identifying the key issues for further assessment;

Consistent with the DGRs, the scope of the ERA was:

To conduct a risk assessment of the potential environmental impacts of the Project, identifying the key issues for further assessment.

1.4 CLARIFYING POINTS

The ERA team discussion of the scope raised the following clarifying points:

- Safety issues were not intended to be covered.
- The geographical extent of the Project area was understood to include the Development Application area.

1.5 RISK ASSESSMENT PROCESS

The risk assessment process was based on the framework provided in Figure 2 (based on AS/NZS ISO 31000:2009 [Standards Australia/Standards New Zealand, 2009] [note: this document has replaced AS/NZS 4360:2004 Risk Management], MDG1010 *Minerals Industry Safety and Health Risk Management Guideline* [NSW Department of Industry and Investment (NSW DII), 2011] and HB 203:2006 *Environmental Risk Management – Principles and Process* [Standards Australia/Standards New Zealand, 2006]).

1.6 RESOURCING, SCHEDULE AND ACCOUNTABILITIES

The following resources were allocated in order to effectively conduct the ERA:

- 1. team of personnel with suitable experience and knowledge of coal mining operations and environmental issues in the area associated with the Project;
- 2. external facilitators for the risk assessment and write-up of results; and
- 3. aerial photographs, drawings, the DGRs for the Project and other supporting information.

The outcomes of the ERA and associated accountabilities will be integrated into the EIS and overall SCPL management systems so that they are effectively reviewed, implemented and monitored.

1.7 METHOD

1.7.1 Framework

Figure 2 outlines the overall framework utilised for the ERA. This framework is further discussed in Section 1.7.2 - Key Steps with respect to the subject area.

Source: Standards Australia/Standards New Zealand, 2009.

Figure 2 - Risk Management Process (AS/NZS ISO 31000:2009)

1.7.2 Key Steps

The key steps in the process included:

- 1. confirming the scope of the ERA;
- 2. listing the key assumptions on which the ERA is based;
- 3. reviewing available data on the Project including reports, plans, maps and aerial photos (both prior to and during the workshop);

- 4. conducting a team-based risk assessment that:
 - a) provided detailed descriptions of the tasks to be undertaken and the proposed method;
 - b) identified hazards and assessed the level of risk; and
 - c) developed a list of recommended controls to treat the risk (through prevention, monitoring, management and rehabilitation strategies);
- preparing a draft report in accordance with AS/NZS ISO 31000:2009 (Standards Australia/Standards New Zealand, 2009) and MDG1010 (NSW DII, 2011) standards, for review by SCPL personnel and ERA team members;
- 6. incorporating comments from SCPL and the ERA team; and
- 7. finalising the report and issuing a controlled copy for ongoing use.

With respect to the overall framework (Figure 2), steps 1 to 3 above represent the 'establish the context' phase, step 4 represents the 'identify risks', 'analyse risks', 'evaluate risks' and step 5 represents the 'treat risks' phases.

As described in Section 1.1, the outcomes of the ERA and associated accountabilities will be integrated into the EIS and overall SCPL management systems so that they are effectively reviewed, implemented and monitored.

1.7.3 External Facilitation

The team was facilitated through the process by **SP Solutions** – a company specialising in risk assessments and risk management programmes. The facilitator, Peter Standish, is experienced with coal mining and many aspects of environmental monitoring and rehabilitation.

The team was encouraged and "challenged" to identify a wide range of environmental impacts or hazards including consideration of far-field impacts (i.e. those impacts affecting the off-site environment).

It is important to understand that the outcomes of this ERA:

- 1. are process driven;
- 2. challenge current thinking and may not necessarily reflect "pre-conceived" ideas; and
- 3. are the result of the team assembled to review the topic and not the result of any one individual or organisation.

2 ESTABLISH THE CONTEXT

2.1 ORGANISATIONAL CONTEXT

SCPL is the proponent and the Project is an extension of the Stratford Mining Complex.

The current mining activities at the Stratford Mining Complex include coal extraction from the existing SCM and BRNOC open cut mining operations. The extracted coal is processed in an existing coal handling and preparation plant (CHPP) at the Stratford Mining Complex.

The location of the existing SCM and BRNOC is shown on Figure 3.

Construction at the SCM commenced in 1995 and the Stratford Main Pit was mined for eight years. The Stratford Main Pit is now used for co-disposal of CHPP rejects and water storage. The BRNOC has been in operation since 2003. All coal produced at BRNOC is transported via existing haul roads to the run-of-mine (ROM) pad, where it is blended and processed in the CHPP. The Stratford Mining Complex currently extracts coal from the Roseville West Pit which commenced in 2007, and from the BRNOC. Small quantities of CHPP rejects are also recovered by excavation from the western co-disposal area for re-processing in the CHPP when the opportunity arises.

The DCM commenced coal production in 2003. ROM coal mined at the DCM is transported on the North Coast Railway to the Stratford Mining Complex where it is unloaded and processed at the CHPP.

The CHPP is used to process ROM coal from the SCM, BRNOC and the DCM, and to re-process CHPP rejects from the western co-disposal area. Blended coal products are transported by rail to the Port of Newcastle for export and domestic customers.

2.2 PROJECT SUMMARY

The main activities associated with the development of the Project would include (Figure 3):

- ROM coal production up to 2.6 Mtpa for an additional 11 years (commencing approximately 1 July 2013 or upon the grant of all required approvals), including mining operations associated with:
 - completion of the BRNOC;
 - extension of the existing Roseville West Pit; and
 - development of the new Avon North and Stratford East Open Cuts;
- exploration activities;
- progressive backfilling of mine voids with waste rock behind the advancing open cut mining operations;
- continued and expanded placement of mine waste rock in the Stratford Waste Emplacement and Northern Waste Emplacement;
- progressive development of new haul roads and internal roads;
- coal processing at the existing CHPP including Project ROM coal, sized ROM coal received and unloaded from the DCM and material recovered periodically from the western co-disposal area;

Printed: 6/06/12

Page 6

• stockpiling and loading of product coal to trains for transport on the North Coast Railway to Newcastle;

GCL-10-12 EIS AppERA_102B

- disposal of CHPP rejects via pipeline to the existing co-disposal area in the Stratford Main Pit and, later in the Project life, the Avon North Open Cut void;
- realignments of Wheatleys Lane, Bowens Road, and Wenham Cox/Bowens Road;
- realignment of a 132 kilovolt (kV) power line for the Stratford East Open Cut;
- continued use of existing contained water storages/dams and progressive development of additional sediment dams, pumps, pipelines, irrigation infrastructure and other water management equipment and structures;
- development of soil stockpiles, laydown areas and gravel/borrow areas, including modifications and alterations to existing infrastructure as required;
- monitoring and rehabilitation;
- all activities approved under DA 23-98/99 and DA 39-02-01; and
- other associated minor infrastructure, plant, equipment and activities, including minor modifications and alterations to existing infrastructure as required.

The Project general arrangement is shown in Figure 3.

A description of the Project is provided in Section 2 in the Main Report to the EIS.

2.3 RISK MANAGEMENT CONTEXT

This ERA has been conducted in accordance with the DGRs for the Project (Section 1.3).

In addition, the ERA was cognisant of the following documents:

- AS/NZS ISO 31000:2009 (Standards Australia/Standards New Zealand, 2009);
- HB 203:2006 Environmental Risk Management Principles and Process (Standards Australia/Standards New Zealand, 2006); and
- MDG1010 (NSW DII, 2011).

A Preliminary Environmental Assessment was undertaken for the Project in 2011 (SCPL, 2011). The key potential environmental impacts identified in the assessment relating to the Project were also considered in this ERA.

2.4 RISK CRITERIA

The risk criteria utilised is to reduce the risk to *As Low As Reasonably Practicable* (ALARP) or lower. Figure 4 schematically shows the three risk management zones *viz*. intolerable, ALARP and tolerable. The middle zone is referred to as the ALARP zone.

Flying is an example of a risk considered by most people to be a tolerable risk; whilst smoking is generally considered to be an activity which cannot be justified on any grounds from a risk perspective. This is shown graphically in Figure 4. Intolerable items such as smoking are at the top of the pyramid whereas much lower risks, such as flying, sit at the lower end of the ALARP zone (close to tolerable).

The risk ranking matrices used during the ERA workshop are presented in Section 4.

Figure 4 – Risk Criteria "ALARP"

3 IDENTIFY RISKS

3.1 OVERVIEW

The identification of risks involved the use of risk assessment "tools" appropriate for identifying potential loss scenarios associated with the Project. The tools used were:

- Introduction Before the potential issues were brainstormed, it was important that the whole team had a good understanding of the Project. This was confirmed by the facilitator.
- Brainstorming This was used to draw out the main issues using the understanding, relevant experience and knowledge of the team. This session also used prompt words to build on the experience base of the team and identify any potential environmental issues and potential loss scenarios.
- Modified Hazard and Operability (HAZOP) Analysis This involved the review of key words drawn from the DGRs for the Project and aerial photographs, and the consequent identification of potential environmental issues at each location during each phase of operation.

3.2 ERA TEAM

The team met for the ERA workshop at the Stratford Mining Complex on 19 January 2012. A team-based approach was utilised in order to have an appropriate mix of skills and experience to identify the potential environmental issues and potential loss scenarios. All team members also reviewed the content of this report. Details of the team members and their relevant qualifications and experience are included in Table 1.

Name	Position/Affiliation	Relevant Qualifications and Experience
Peter Standish	Facilitator - SP Solutions	PhD, BE (Hon), Dip Bus Mgt, Risk Analysis Trained. Certificate of Competence as a Manager. Thirty-three years of experience in underground and open cut mining operations with operating, managerial and contract management experience. Involved in environmental risk reviews for seven years. Conducting Risk Analyses for 12 years.
Mike Smith	General Manager - Gloucester Basin – SCPL	Dip Chemistry, RCA Trained/Presenter (Tap Root). Forty years industrial experience.
Tony Dwyer	Manager Environment and Approvals – SCPL	BSc - Grad Dip Natural Resources, Masters of Env & Business Mgt. Fifteen years industrial experience
Noel Merrick	Principal - Heritage Computing	PhD, MSc, GDip (DP), BSc; Groundwater modeller, hydrogeologist & geophysicist. Forty years experience.
Tony Marszalek	Principal Engineer - Gilbert & Associates	M Eng, BE (Civil), 26 years experience in mining related waste and water resources
Ronan Kellaghan	Senior Air Quality Scientist - PAE Holmes	BSc, MSc, 10 years industrial experience in Environmental sector. Eight years consulting in air quality in Australia.
Francine Triffett	Environmental Scientist - PAE Holmes	B Resource & Environmental Mgt. Three and a half years experience.
Glenn Thomas	Technical Director - SLR Consultants	BSc. Twenty years experience in mining and infrastructure noise impact assessment and control.

Table 1 – ERA Team

Table 1 – ERA Team (Continued)

Name	Position/Affiliation	Relevant Qualifications and Experience
Peter Cribb	Principal – Resource Strategies	BAg Sc. Over 20 years industry experience.
Aaron Hagenbach	Senior Environmental Manager – Resource Strategies	BE (Env)(Hon). Twelve years experience environmental management and project approvals in resource industry.
Clive Berry	Senior Environmental Manager - Resource Strategies	BE (Environmental). Eleven years experience environmental management and project approvals in resource industry.
Jamie Gleeson	Environmental Manager - Senior Ecologist - Resource Strategies	BSc (Ecology)(Hon). Eleven years experience in ecological assessment and environmental management in resource industry.
Jamie Warwick	Environmental Project Manager - Resource Strategies	BE (Civil). One year environmental management experience.

3.3 RISK IDENTIFICATION

3.3.1 Brainstorming

The brainstorming process is intended to allow for a relatively unstructured, free flowing series of issues and ideas to be generated. It is enhanced through the use of key word association processes based on work by Edward de Bono, and is intended to generate a wide range of data on losses, controls and general issues related to the Project area.

No "filtering" of the data is allowed during the process and the reader should be conscious of the intent of not missing a potential "left field" loss when reading through the material.

Issues identified during the brainstorming session are presented in Attachment B.

3.3.2 Modified HAZOP

The next "tool" applied with the team was a modified HAZOP. In this process the Project General Arrangement (e.g. Figure 3) was referred to along with a consideration of the phases of operation and the potential impacts that could arise.

The generic key words used in the process representing environmental issue subject areas (generally based on the headings in the DGRs for the Project) were:

- Noise.
- Surface Water.
- Air Quality.
- Groundwater.
- Flora and Fauna.
- Aquatic Ecology.
- Rehabilitation/Closure.
- Socio-Economic.
- Aboriginal/Non-Aboriginal Heritage.
- General.
- Land Resources.
- Transport.
- Visual.

3.3.3 Identification of Key Environmental Issue Types

In accordance with the DGRs for the Project, the key potential environmental issues were identified through a 'voting' system whereby team members were assigned a number of "votes" to allocate to what they considered to be the key environmental issues. Issues that received one or more 'votes' were designated to be key environmental issues. Key potential environmental issues are those issues with assigned 'votes' and are shown in Table 2.

Ref	Subject Area	Issue Identified	Votes
SX019	Groundwater	Potential cumulative groundwater impacts as a result of the AGL Gloucester LE	
		Pty Ltd (AGL) Gloucester Gas Project, proposed Rocky Hill Coal Project and the	10
		Project.	
SX020	Groundwater	Final void water management and development of groundwater sinks in the	1
		long-term.	T
SX072	Groundwater	Potential groundwater related impacts (e.g. baseflow loss) on Dog Trap Creek,	4
		Avondale Creek and associated alluvium	4
SX085	Groundwater	Potential reduction in yield in surrounding landholder bores (e.g. Stratford)	2
		resulting from the Project.	2
SX072A	Groundwater	Potential leakage of stored mine water in the Stratford East Dam through	
		underlying coal seams to Stratford East Open Cut – resulting in higher	1
		groundwater inflows requiring management	
SX007	Surface Water	Potential for long-term spill of water with elevated salinity from final voids.	5
SX008	Surface Water	Long-term stability of upslope permanent diversions.	2
SX009	Surface Water	Long-term stability of unnamed tributary to Avondale Creek.	1
SX014	Surface Water	Design of post-mine landform water management to be stable in the long-term,	0
		including upslope diversions.	0
SX018	Surface Water	Site water balance and management of surplus mine water on-site to achieve	G
		zero discharge of mine water.	0
SX024	Noise	Potential for intrusive noise and sleep disturbance impacts on some receivers	
		including dwellings, schools, a church and recreational areas resulting from	8
		Project operations.	
SX026	Noise	Noise amenity and sleep disturbance impacts on near-by receivers from Project	6
		road and rail operations during daytime, evening and night-time.	0
SX089	Noise	Operational requirement for additional fixed and mobile plant – leading to	2
		additional noise impacts.	2
SX101	Noise	Noise performance and non-compliance with noise criteria during Project	7
		operations.	,
SX030	Air Quality	Increased emissions of PM ₁₀ /PM _{2.5} /total suspended particulates (TSP)/dust	
		deposition from the Project resulting in the potential for increase in predicted	10
		impact (health and amenity) at residential receivers.	
SX031	Air Quality	Potential for increase in cumulative impact associated with the Project,	2
		proposed Rocky Hill Coal Project and the AGL Gloucester Gas Project.	_
SX032	Air Quality	Heightened community concern regarding health related air quality issues,	4
		including cumulative impacts.	-
SX0084	Air Quality	Potential for an increase in dust and aerial contaminants on Stratford homes,	1
		resulting in contamination of their tank water supplies.	
SX091	Air Quality	Changes in the air quality effects between modelled and actual levels	1
		experienced (due to conservative assumptions in modelling).	
SX038	Flora & Fauna	Potential for loss of terrestrial flora and fauna and their habitat - other species	4
		(non-threatened).	
SX039	Flora & Fauna	Fragmentation of habitats impacting movement of fauna.	5
SX040	Flora & Fauna	Potential impacts on threatened fauna species (Squirrel Glider, Glossy Black-	5
ļ		cockatoo and New Holland Mouse).	
SX044	Flora & Fauna	Failure of revegetation and/or habitat enhancement in the offset area or	1
	1	biodiversity enhancement areas.	-

Table 2 – Key	v Potential	Environmental	
$I a \mu e 2 - Re^{1}$	v Futentiai	citvitutitientai	issues

	Subject Area		Votes
SX047	Flora & Fauna (Aquatic	Potential change in flow persistence in Avondale Creek, Dog Trap Creek and/or Avon River leading to adverse aquatic ecology impacts.	2
SX068	Aboriginal/ Non- Aboriginal Heritage	Potential indirect impacts on potential cultural site CTS-1.	1
SX051	Socio- Economic	Potential impacts on amenity (effects on tourism, loss of farming land, proximity to Stratford), water quality (environmental), noise, air quality, health and transport.	4
SX043	Rehabilitation /Closure	Potential for failure of revegetation and/or habitat enhancement on post-mine landforms.	1
SX083	Rehabilitation /Closure	Geotechnical issues related to the Roseville West Pit Extension (where excavating through reject material).	2
SX062A	Rehabilitation /Closure	Long-term stability and rehabilitation of CHPP rejects deposited in the co-disposal areas.	5

The key potential environmental issues identified in the ERA will be addressed in the EIS and its supporting specialists reports, included as appendices to the EIS:

- Appendix A Groundwater Assessment.
- Appendix B Surface Water Assessment.
- Appendix C Noise and Blasting Assessment.
- Appendix D Air Quality and Greenhouse Gas Assessment.
- Appendix E Flora Assessment.
- Appendix F Terrestrial Fauna Assessment.
- Appendix G Aquatic Ecology Assessment.
- Appendix H EPBC Act Controlling Provisions.
- Appendix I Aboriginal Cultural Heritage Assessment.
- Appendix J Non-Aboriginal Heritage Assessment.
- Appendix K Agricultural Assessment.
- Appendix L Geochemistry Assessment.
- Appendix M Land Contamination Assessment.
- Appendix N Road Traffic Assessment.
- Appendix O Visual Assessment.
- Appendix P Socio-Economic Assessment.
- Appendix Q Preliminary Hazard Analysis.

3.3.4 Overview of Priorities by Study Area

The key potential environmental issues identified in Section 3.3.3 were then grouped by study area to obtain an indication of the priority environmental study areas for the EIS. The identified priority environmental study areas for the Project EIS based on the voting system adopted in the ERA are (number of votes received in each study area in parentheses):

- Noise (23).
- Surface water (22).
- Groundwater (18).
- Air Quality (18).
- Flora and Fauna (includes Aquatic Ecology) (17).
- Rehabilitation/closure (8).
- Socio Economic (4).
- Aboriginal/non-aboriginal heritage (1).

The number of votes assigned to each priority study area is shown graphically in Figure 5.

Figure 5 – Proportional Priorities by Study Area (ERA Team Assigned)

4 ANALYSE RISKS

4.1 PROBABILITY AND MAXIMUM REASONABLE CONSEQUENCE

Potential loss scenarios (primarily based on the identified key potential environmental issues) were ranked for risk by the ERA team. A tabular analysis was used for this risk ranking process, based on the probability and consequence of a loss scenario occurring as decided by the ERA team.

The following definition of risk was used:

- the combination of the probability of an unwanted event occurring; and
- the maximum reasonable consequences (MRCs) should the event occur.

Table 3 to Table 6 inclusive present the ERA matrix tools that were utilised for ranking risks.

Rank (P)	Probability	Descriptor
А	Almost Certain	Happens often
В	Likely	Could easily happen
С	C Possible Could happen and has occurred elsewhere	
D	Unlikely Hasn't happened yet but could	
E	Rare	Conceivable, but only in extreme circumstances

Table 3 – Qualitative Measures of Probability

Table 4 – Qualitative Measures of Maximum Reasonable Consequence¹

Ref (C)	Consequence	Comment
1	Extreme environmental harm	E.g. widespread catastrophic impact on environmental values of an area.
2	Major environmental harm	E.g. widespread substantial impact on environmental values of an area.
3	Serious environmental harm	E.g. widespread and considerable impact on environmental values of an area.
4	Material environmental harm	E.g. localised and considerable impact on environmental values of an area.
5	Minimal environmental harm	E.g. minor impact on environmental values of an area.

¹ Notes: MRC: – The worst-case consequence that could reasonably be expected, given the scenario and based upon experience at the operation and within the mining industry.

Table 5 – Quantitative Measures of Maximum Reasonable Consequence

Asset/Infrastructure				
1	More than \$50 million (M) loss or production delay			
2	\$10M to \$50M loss or production delay			
3	\$1M to \$10M loss or production delay			
4	\$100 thousand (k) to \$1M loss or production delay			
5	Less than \$100k loss or production delay			

		Probability (P)				
		А	В	с	D	Е
Consequence (C)	1	1 (H)	2 (H)	4 (H)	7 Med	11 Med
	2	3 (H)	5 (H)	8 Med	12 Med	16 (L)
	3	6 (H)	9 Med	13 Med	17 (L)	20 (L)
	4	10 Med	14 Med	18 (L)	21 (L)	23 (L)
	5	15 Med	19 (L)	22 (L)	24 (L)	25 (L)

Table 6 – Risk Ranking Table

Notes:

L = Low; M = Moderate; H = High

Risk Numbering:

1 = highest risk, 25 = lowest risk

Legend:

Risk Levels:

Tolerable
ALARP
Intolerable

4.2 RISK RANKING

Using the ERA matrix tools (Tables 3 to 6), risk ranking was undertaken by the team on loss scenarios based on the key potential environmental impacts (Table 7).

Study Area	Issue	Ranking Basis/Unwanted Event	Consequence	Probability	Risk ¹
	Potential cumulative	Considered the potential for			
	groundwater impacts as a	groundwater			
	result of the AGL	depressurisation/drawdown and			
	Gloucester Gas Project,	impact on surrounding			
	proposed Rocky Hill Coal	groundwater users. Risk			
	Project and the Project.	considered both with and without			
		AGL Gloucester Gas Project and			
		proposed Rocky Hill Coal Project			14 Medium
		and cumulative scenario assumed	4	в	(cumulative)
		that AGL wells would be installed			(
		between Roseville West Pit			
		Extension and Stratford concurrent	4	с	18 Low
		with Roseville West Pit Extension			(SCPL only)
		mining.			
		Mitigation discussion noted that			
		the timing (sequence of the other			
		operations to occur concurrently is			
		not certain therefore the issue was			
		also considered on an SCPL only			
		basis.			
	Final void water	Considered the potential for			
	management and	surface water spills from final voids			
	development of	due to reporting catchment and pit			
	groundwater sinks in the	inflows.			
Groundwater	long term.				
		Mitigated by design of void to be a			
		groundwater sink in the long term	5	c	22 Low
		e.g. reduction of size of final void by	5	C	22 LOW
		partially backfilling completed pit			
		with waste rock, minimisation of			
		surface water catchment reporting			
		to final void and final void water			
		balance indicating that spills are			
	Dotontial groundwater	Considered the depressuries tion of			
	rolated impacts (o g	underlying coal measures and			
	haseflow loss) on Dog	notential for reduction of flows in			
	Tran Creek Avondale	Dog Tran Creek and Avondale Creek			
	Creek and associated	from removal of alluvium with			10 Medium
	alluvium.	contained water and potential	4	Α	(Dog Trap
		impacts on baseflow.			Creek)
		Dog Trap and Avondale Creeks			15 Medium
		considered separately.	5	Α	(Avondale
					Creek)
		Mitigated by avoidance of mining			
		within Dog Trap Creek alluvium and			
		recovery of groundwater levels			
		post-mining.			

Table 7 – Risk Ranking Results

Study Area	Issue	Ranking Basis/Unwanted Event	Consequence	Probability	Risk ¹
-	Potential reduction in	Considered the potential for	-		
	yield in surrounding	reduced yield/access to water for			
	landholder bores (e.g.	surrounding landholders including			
	Stratford) resulting from	Stratford bores as a result of	4	С	18 Low
	the Project.	groundwater			
		depressurisation/drawdown			
		(Project-only).			
Groundwater	Potential leakage of	Considered potential for leakage of			
(Continued)	stored mine water in the	water from Stratford East Dam to			
	Stratford East Dam	the Stratford East Open Cut during			
	through underlying coal	mining operations.	-	E E	25 Low
	Open Cut - resulting in	Mitigated by limited potential for	5	E	25 LOW
	bigher groundwater	environmental impact as any water			
	inflows requiring	would be collected in mine water			
	management.	system and managed accordingly.			
	Potential for long-term	Considered the potential for long-			
	spill of water with	term saline contaminant migration			23 Low
	elevated salinity from final	to downstream waterways and			(surface
	voids.	consequent impacts on		-	water
		downstream water users and	4	E	users)
		ecology. This could occur if the			
		void does not act as a localised			
		groundwater sink.	3	F	
			3	-	20 Low
		Risks considered separately for			(aquatic
		surface water users and aquatic			ecology)
		ecology.			
	Long-term stability of	Considered the potential for			
	Avendale Creek	stability issues associated with an			
	Avolidale creek.	Creek when water is temporarily			
		diverted into it as part of the			
_		upslope water diversion system.			
Surface Water			5	E	25 Low
		Mitigated by the progressive			
		development of upslope diversions			
		(and reporting catchment), short-			
		term and localised impacts (whilst			
		upslope water is being diverted			
		there during operations).			
	Design of post-mine	Considered long-term			
	landform water	sediment/contaminant migration to			21 Low
	management to be stable	downstream waterways and			(surface
	in the long-term, including	consequent impact on downstream	4	D	water
	upsiope aiversions.	water users and ecology. A failure			users)
		of the fandrorm could potentially			
		cause these losses to occur.	3	D	17 Low
		cause these losses to occur.	3	D	17 Low (aquatic
		cause these losses to occur. Risks considered separately for	3	D	17 Low (aquatic ecology)

Study Area	Issue	Ranking Basis/Unwanted Event	Consequence	Probability	Risk ¹
	Site water balance and	Considered the potential for an			
	management of surplus	uncontrolled discharge of mine			
	mine water on-site to	water.			
	achieve zero discharge of				
	mine water.	Mitigated by site water			22.1
		management system design and			23 LOW
Surface Water		implementation (i.e. minimise		-	(surface
(Continued)		disturbed catchment; progressive	4	E	water users/
		rehabilitation resulting in free-			aquatic
		draining landforms; expansion of			ecology)
		dust suppression use and irrigation			
		on contained catchments; use of pit			
		voids and disruption to mine			
		operations [operational risk]).			
	Potential for intrusive	Considered exceedances of criteria			
	noise and sleep	leading to a significant loss of			
	disturbance impacts on	amenity amongst receivers.			
	some receivers including				
	dwellings, schools, a	Mitigated by use of noise	4	В	14 Medium
	church and recreational	attenuated fleet items, bunding of			
	areas resulting from	on-site haul roads and rail			
Noise	Project operations.	operations, and operation of a real-			
Noise		time noise monitoring system.			
	Noise amenity and sleep	Considered potential for additional			
	disturbance impacts on	rail noise impacts.			
	near-by receivers from				
	Project road and rail	Mitigated by minimal additional	4	В	14 Medium
	operations during	train movements for the Project			
	daytime, evening and	(i.e. one additional peak rail			
	night-time.	movement per day).			
	Increased emissions of	Considered the potential for			
	PM ₁₀ /PM _{2.5} /TSP/dust	exceedance of criteria leading to			
	deposition from the	loss of amenity and health impacts			
	Project resulting in the	amongst receivers.			
	potential for increase in	A distance of the output of the section of the	4	В	14 Medium
	predicted impact (nealth	Wiltigated by air quality mitigation			
	and amenity) at	measures (including additional			
Air Quality	residential receivers.	watering) to minimise predicted air			
Air Quality	Detential faction and a sin	quality impacts.			
	Potential for increase in	for sumulative imposts			
	cumulative impact	for cumulative impacts.			
	Broject proposed Recky	Mitigated by distance between			
	Hill Coal Project and the	proposed operations and	4	D	21 Low
		orientation of the operations			
	Project	relative to each other limits			
	Trojett.	notential for cumulative impacts			
		potential for cumulative impacts.		1	1

Study Area	Issue	Ranking Basis/Unwanted Event	Consequence	Probability	Risk ¹
Air Quality (Continued)	Potential for an increase in dust and aerial contaminants on Stratford homes resulting in contamination of their tank water supplies.	Considered the possibility of contamination of residential water supplies sourced from household tanks. Mitigated by relatively low contribution of air pollutants by the mine and findings of a range of scientific studies including a local Clourester Shire Courcil study	5	E	25 Low
	Potential for loss of terrestrial flora and fauna and their habitat - other species (non-threatened)	Considered the potential loss of a local population (non-threatened fauna) and their habitats. Mitigated by minimisation of disturbance areas, Flora and Fauna Management Plan and Project offset outcomes.	4	E	23 Low
Flora & Fauna	Fragmentation of habitats impacting movement of fauna.	Considered the potential for increased isolation of habitat due to Project-related clearing, leading to a decrease in habitat connectivity and therefore the potential for a decrease in fauna diversity. Mitigated by minimisation of disturbance areas, Flora and Fauna Management Plan and Project offset.	4	C	18 Low
	Potential impacts on threatened fauna species (Squirrel Glider, Glossy Black-cockatoo and New Holland Mouse).	Considered the potential loss of a local population (threatened fauna). Mitigated by minimisation of disturbance areas, Flora and Fauna Management Plan and Project offset.	3	D	17 Low
	Failure of revegetation and/or habitat enhancement in the offset area or biodiversity enhancement areas.	Considered the potential for failure of biodiversity enhancement in offset areas. Considered with monitoring of rehabilitation progress and implementation of remedial measures in place.	4	D	21 Low
	Potential change in flow persistence in Avondale Creek, Dog Trap Creek and/or Avon River leading to adverse aquatic ecology impacts.	Considered the potential for changes in flow regimes in Avondale Creek, Dog Trap Creek and/or Avon River resulting in adverse impacts on aquatic ecology. Mitigated by implementation of upslope diversion system and progressive rehabilitation to minimise catchment excision over	5 5 5	A E C	15 Medium (Avondale Creek) 25 Low (Avon River) 22 Low (Dog Trap Creek)
		the life of the Project.			

Study Area	Issue	Ranking Basis/Unwanted Event	Consequence	Probability	Risk ¹
Aboriginal/Non- Aboriginal Heritage	Potential indirect impacts on potential cultural site CTS-1.	Considered the potential for damage to potential cultural site CTS-1 due to proximate mining activities. Mitigated by the isolation of the area, therefore avoiding any direct impacts, and that predicted blast vibration levels are likely to be below relevant criteria.	4	D	21 Low
	Potential for failure of revegetation and/or habitat enhancement on post-mine landforms.	Considered the potential for failure of revegetation and/or habitat enhancement on post-mine landforms, and failure to establish biodiversity in areas rehabilitated to woodland. Mitigated by past successful rehabilitation practices and appropriate future rehabilitation planning.	3	D	17 Low
	Geotechnical issues related to the Roseville West Pit Extension (where excavating through reject material).	Considered the challenges of rehabilitating exposed rejects in the low wall of the Roseville West Pit Extension, potentially resulting in an unstable final landform and failure of old Roseville Pit. Mitigated by geotechnical considerations incorporated into final pit design.	4	D	21 Low
	Long-term stability and rehabilitation of CHPP rejects deposited in the Stratford Main Pit (co- disposal area).	Considered the potential for stability and rehabilitation success of rehabilitation of areas above CHPP rejects emplacements. Mitigated by placement of rejects below the groundwater table level and placement of waste rock on top of rejects material.	5	с	22 Low

5 MONITOR AND REVIEW

5.1 NOMINATED CO-ORDINATOR

The nominated client review facilitator is Tony Dwyer, Manager Environment and Approvals, SCPL.

It is understood the nominee will co-ordinate the inclusion of the key potential environmental issues into the various studies undertaken as part of the EIS and the overall SCPL management systems.

5.2 COMMUNICATION AND CONSULTATION

Consultation, involvement of personnel (SCPL and their specialists) and communication of the process and outcomes of the ERA are intended to be achieved by the inclusion of this report and the relevant specialist assessments addressing the key potential environmental issues in the EIS and the overall SCPL management systems.

5.3 CONCLUDING REMARKS

The risk assessment process conducted by the team was aligned with AS/NZS ISO 31000:2009 (Standards Australia/Standards New Zealand, 2009) and MDG1010 (NSW DII, 2011), with the intention of identifying the key potential environmental issues for the Project to be further assessed in the EIS.

An appropriately detailed assessment of the key potential environmental issues will be included in the EIS appendices/sections, as presented in Table 8.

Ref	Subject Area	Issue Identified	EIS Appendix/Section
SX019	Groundwater	Potential cumulative groundwater impacts as a result of the AGL Gloucester Gas Project, proposed Rocky Hill Coal Project and the Project.	Appendix A and Section 4
SX020	Groundwater	Final void water management and development of groundwater sinks in the long-term.	Appendix A and Section 4
SX072	Groundwater	Potential groundwater related impacts (e.g. baseflow loss) on Dog Trap Creek, Avondale Creek and associated alluvium.	Appendix A and Section 4
SX085	Groundwater	Potential reduction in yield in surrounding landholder bores (e.g. Stratford) resulting from the Project.	Appendix A and Section 4
SX072A	Groundwater	Potential leakage of stored mine water in the Stratford East Dam through underlying coal seams to Stratford East Open Cut – resulting in higher groundwater inflows requiring management.	Appendix A and Section 4
SX007	Surface Water	Potential for long-term spill of water with elevated salinity from final voids.	Appendix B and Section 4
SX008	Surface Water	Long-term stability of upslope permanent diversions.	Appendix B and Section 4
SX009	Surface Water	Long-term stability of unnamed tributary to Avondale Creek.	Appendix B and Section 4
SX014	Surface Water	Design of post-mine landform water management to be stable in the long-term, including upslope diversions.	Appendix B and Section 4
SX018	Surface Water	Site water balance and management of surplus mine water on- site to achieve zero discharge of mine water.	Appendix B and Section 4

Table 8 – Key Potential Environmental Issues to be Further Assessed i	in the EIS
---	------------

Table 8 – Key Potential Environmental Issues to be Further Assessed in the EIS (Continued)

	, 		
Ref	Subject Area	Issue Identified	EIS Appendix/Section
SX024	Noise	Potential for intrusive noise and sleep disturbance impacts on	Appendix C and Section 4
		some receivers including dwellings, schools, church and	
	-	recreational areas resulting from Project operations.	
SX026	Noise	Noise amenity and sleep disturbance impacts on near-by	Appendix C and Section 4
		receivers from Project road and rail operations during daytime,	
		evening and night-time.	
SX089	Noise	Operational requirement for additional fixed and mobile plant	Appendix C and Section 4
		 leading to additional noise impacts. 	
SX101	Noise	Noise performance and non-compliance with noise criteria	Appendix C and Section 4
		during Project operations.	
SX030	Air Quality	Increased emissions of PM ₁₀ /PM _{2.5} /TSP/dust deposition from	Appendix D and Section 4
		the Project resulting in the potential for increase in predicted	
		impacts (health and amenity) at residential receivers.	
SX031	Air Quality	Potential for increase in cumulative impact associated with the	Appendix D and Section 4
	-	Project, proposed Rocky Hill Coal Project and the AGL	
		Gloucester Gas Project.	
SX032	Air Quality	Heightened community concern regarding health related air	Appendix D and Section 4
		quality issues, including cumulative impacts.	
SX084	Air Quality	Potential for an increase in dust and aerial contaminants on	Appendix D and Section 4
	,	Stratford homes resulting in contamination of their tank water	
		supplies.	
SX091	Air Quality	Changes in the air quality effects between modelled and actual	Appendix D and Section 4
		levels experienced (due to conservative assumptions in	
		modelling).	
SX038	Flora and Fauna	Potential for loss of terrestrial flora and fauna and their habitat	Appendices E and F and
		- other species (non-threatened).	Section 4
SX039	Flora and Fauna	Fragmentation of habitats impacting movement of fauna.	Appendix F and Section 4
SX040	Flora and Fauna	Potential impacts on threatened fauna species (Squirrel Glider.	Appendix F and Section 4
		Glossy Black-cockatoo and New Holland Mouse).	
SX044	Flora and Fauna	Failure of revegetation and/or habitat enhancement in the	Appendices F and F and
5/1011		offset area or biodiversity enhancement areas.	Section 4
52047	Elora and Eauna	Potential change in flow persistence in Avondale Creek, Dog	Appendix G and Section 4
57047		Tran Creek and/or Avon River leading to adverse aquatic	Appendix d and Section 4
	() iquatic Ecology)	ecology impacts	
52068	Aboriginal/Non-	Potential indirect impacts on potential cultural site CTS-1	Appendix Land Section 4
57008	Aboriginal Heritage	rotential indirect impacts on potential cultural site C13-1.	Appendix I and Section 4
SYOE 1		Detential impacts on amonity (effects on tourism, loss of	Appendix D and Section 4
37031	30010-20010111C	forming land, provimity to Stratford) water quality	Appendix F and Section 4
		(any irrenmental) poice air guality health and transport	
52042	Robabilitation/Classes	Detential for failure of revegetation and/or habitat	Section F
37043	Renabilitation/Closure	anhancement on post mine landforms	Section S
CYOC2	Dahahilitati /Cl	Control on post-mine landforms.	Continu 5
2X083	Renabilitation/Closure	Geotechnical issues related to the Roseville West Pit Extension	Section 5
CYOCO :	Data tellina tellina	(where excavating through reject material).	Contra 5
SX062A	Rehabilitation/Closure	Long-term stability and rehabilitation of CHPP rejects deposited	Section 5
		in the co-disposal areas.	

The risk rankings indicate that the loss scenarios ranked were within the "Medium - ALARP" or the "Low" range.

SP Solutions would like to thank all of the personnel who contributed to the risk assessment in particular those personnel from SCPL and Resource Strategies who prepared source material for the team session.

Peter Standish, March 2012

Printed: 6/06/12 Page 23

6 REFERENCES

- NSW Department of Industry and Investment (2011) MDG1010 Mineral Industry Safety and Health Risk Management Guideline. January 2011.
- Standards Australia/Standards New Zealand (2006) HB 203:2006 Environmental Risk Management Principles and Process.

Standards Australia/Standards New Zealand (2009) AS/NZS ISO 31000:2009 Risk Management – Principles and Guidelines.

Stratford Coal Pty Ltd (2011) Stratford Extension Project Description and Preliminary Environmental Assessment.

ATTACHMENT A – DEFINITIONS

Term	Explanation
ALARP	"As Low As Reasonably Practicable". The level of risk between tolerable and intolerable levels that can be achieved without expenditure of a disproportionate cost in relation to the benefit gained.
AS/NZS ISO 31000:2009	Australian Standard/New Zealand Standard on Risk Management (see references in Section 6).
Cause	A source of harm.
Control	An intervention by the proponent intended to either Prevent a Cause from becoming an incident or to reduce the outcome should an incident occur.
DGRs	Director-General's Requirements.
ERA	Environmental Risk Assessment.
MDG1010	NSW Department of Industry and Investment guideline on risk management (see references in Section 6).
Outcome	The end result following the occurrence of an incident. Outcomes are analogous to impacts and have a risk ranking attached to them.
Personnel	Includes all people working in and around the site (e.g. all contractors, sub-contractors, visitors, consultants, project managers etc.).
Practicable	The extent to which actions are technically feasible, in view of cost, current knowledge and best practices in existence and under operating circumstances of the time.
PM10	Particulate matter less than 10 microns in size.
PM _{2.5}	Particulate matter less than 2.5 microns in size.
Receiver	A location where people may experience noise or air quality impacts, for example a dwelling.
Review	An examination of the effectiveness, suitability and efficiency of a system and its components.
Risk	The combination of the potential consequences arising from a specified hazard together with the likelihood of the hazard actually resulting in an unwanted event.
TSP	Total Suspended Particulates
TSS	Total Suspended Solids

ATTACHMENT B - ISSUE IDENTIFICATION RESULTS

The output from the team's "brainstorming" is presented below. This list has been sorted according to the study area which were drawn, in part, from the Director-General's Requirements received for the Project.

Ref	Study Area	Issue Identified
SX066	Aboriginal/Non-Aboriginal Heritage	Potential impacts on Aboriginal heritage sites.
SX067	Aboriginal/Non-Aboriginal Heritage	Potential indirect impacts on non-Aboriginal heritage items.
SX068	Aboriginal/Non-Aboriginal Heritage	Potential indirect impacts on potential cultural site CTS-1.
SX073	Aboriginal/Non-Aboriginal Heritage	Potential risks to unknown cultural heritage sites.
SX030	Air Quality	Increased emissions of $PM_{10}/PM_{2.5}$ /total suspended particulates/dust deposition from the Project resulting in the potential for increase in predicted impact (health and amenity) at residential receivers.
SX031	Air Quality	Potential for increase in cumulative impact associated with the Project, proposed Rocky Hill Coal Project and the AGL Gloucester LE Pty Ltd (AGL) Gloucester Gas Project.
SX032	Air Quality	Heightened community concern regarding health related air quality issues, including cumulative impacts.
SX033	Air Quality	Increased impacts (health and amenity) associated with the transport of coal by rail.
SX034	Air Quality	Increase in greenhouse gas emissions as a result of the Project and increased financial liability under the carbon tax
SX035	Air Quality	Impacts associated with blast-fume emissions
SX036	Air Quality	Odour from spontaneous combustion events
SX037	Air Quality	Potential dust impacts on 132 kiolvolt (kV) electricity transmission line.
SX075	Air Quality	Greenhouse gas emissions due to transfer of bulk water quantities around the site.
SX084	Air Quality	Potential for an increase in dust and aerial contaminants on Stratford homes resulting in contamination of their tank water supplies.
SX091	Air Quality	Changes in the air quality effects between modelled and actual levels experienced (due to conservative assumptions in modelling).
SX038	Flora & Fauna	Potential for loss of terrestrial flora and fauna and their habitat - other species (non- threatened).
SX039	Flora & Fauna	Fragmentation of habitats impacting movement of fauna.
SX040	Flora & Fauna	Potential impacts on threatened fauna species (Squirrel Glider, Glossy Black-cockatoo and New Holland Mouse).
SX041	Flora & Fauna	Loss of additional vegetation when a large proportion of some vegetation has already been cleared in the region (Cabbage Gum Woodland).
SX042	Flora & Fauna	Incursion and spread of environmental weeds and feral vertebrate fauna.
SX044	Flora & Fauna	Failure of revegetation and/or habitat enhancement in the offset area or biodiversity enhancement areas.
SX045	Flora & Fauna	Loss of fauna due to interactions with the final voids.
SX046	Flora & Fauna	Effects on existing/approved wildlife corridors.
SX047	Flora & Fauna	Potential change in flow persistence in Avondale Creek, Dog Trap Creek and/or Avon River leading to adverse aquatic ecology impacts.
SX079	Flora & Fauna	Potential impacts on the Glen Nature Reserve from Project operations.
SX092	Flora & Fauna	Effects of the operation on the proposed offset (physically close to the operation).
SX062B	Flora & Fauna	Bushfire risk to proposed biodiversity offset.
SX069	General	Potential interactions with the proposed Stroud to Lansdowne Project 330 kV electricity transmission line.
SX070	General	General refuse disposal.
SX082	General	Longer term public safety from the final voids and general site areas and mine landforms.
SX019	Groundwater	Potential cumulative groundwater impacts as a result of the AGL Gloucester Gas Project, proposed Rocky Hill Coal Project and the Project.
SX020	Groundwater	Final void water management and development of groundwater sinks in the long-term.
SX021	Groundwater	Potential groundwater-related impacts on Dog Trap Creek alluvium (i.e. induced leakage).
SX071	Groundwater	Potential impacts (i.e. drawdown, quality and recharge) of the Project on groundwater levels
SX072	Groundwater	Potential groundwater related impacts (e.g. baseflow loss) on Dog Trap Creek, Avondale Creek and associated alluvium.

Printed: 6/06/12 Page B-1

Ref	Study Area	Issue Identified
SX085	Groundwater	Potential reduction in yield in surrounding landholder bores (e.g. Stratford) resulting from the Project.
SX072A	Groundwater	Potential leakage of stored mine water in the Stratford East Dam through underlying coal seams to Stratford East Open Cut – resulting in higher groundwater inflows requiring management.
SX059	Land Resources	Potential impacts on land use/capability resulting from the Project.
SX060	Land Resources	Potential impacts on soils and erosion potential resulting from the Project.
SX061	Land Resources	Potential for land contamination.
SX063	Land Resources	Increased bushfire risk.
SX094	Land Resources	Retention of coal handling and preparation plant (CHPP) reagents in rejects (land contamination issue).
SX097	Multiple	Potential for requiring a larger product stockpile if unable to rail coal due to existing consent constraints.
SX022	Noise	Potential blast flyrock impacts on existing/approved infrastructure (i.e. electricity transmission lines, gas pipelines/wells, and roads) or heritage items.
SX023	Noise	Intrusive noise impacts on sensitive receivers resulting from on-site and off-site Project construction, (i.e. internal haul roads, earth bunds and barriers, Wenham Cox Road/Bowens Road, Wheatleys Lane and Bowens Road.
SX024	Noise	Potential for intrusive noise and sleep disturbance impacts on some receivers including dwellings, schools, a church and recreational areas resulting from Project operations.
SX025	Noise	Cumulative noise impacts from the concurrent operation of the Project, AGL Gloucester Gas Project and proposed Rocky Hill Coal Project.
SX026	Noise	Noise amenity and sleep disturbance impacts on nearby receivers from Project road and rail operations during daytime, evening and night-time.
SX027	Noise	Impacts on occupant comfort from air blast and ground vibration emissions as a result of daytime blasting.
SX028	Noise	Potential for vibration impacts on buildings and heritage items.
SX029	Noise	Potential inconsistency between New South Wales (NSW) Industrial Noise Policy assessment process and consented noise and weather limits results in additional periods where real time controls are required.
SX074	Noise	Requirement to purchase nearby properties due to noise affectation (and being unable to do so).
SX078	Noise	Noise related issues associated with Stratford East Open Cut (from an assessment perspective) - potential impacts in the Glen Road area.
SX089	Noise	Operational requirement for additional fixed and mobile plant - leading to additional noise impacts.
SX090	Noise	Degree of buffer required if there is a difference between modelled and actual operational noise levels.
SX096	Noise	Implementation of earlier noise mitigation commitments prior to commencement of the Project.
SX101	Noise	Noise performance and non-compliance with noise criteria during Project operations.
SX043	Rehabilitation/Closure	Potential for failure of revegetation and/or habitat enhancement on post-mine landforms.
SX062	Rehabilitation/Closure	Permanent loss of land due to increased number of final voids.
SX065	Rehabilitation/Closure	Management of CHPP rejects backfilled in-pit - particularly potential acid mine drainage issues.
SX083	Rehabilitation/Closure	Geotechnical issues related to the Roseville West Pit Extension (where excavating through reject material).
SX095	Rehabilitation/Closure	Quality of irrigation water (suitability).
SX062A	Rehabilitation/Closure	Long-term stability and rehabilitation of CHPP rejects deposited in the co-disposal areas.
SX048	Socio-Economic	Continued employment of approximately 125 personnel, including flow on effects to the regional and NSW economy.
SX049	Socio-Economic	Employment of approximately 125 additional personnel.
SX050	Socio-Economic	Continued payment of royalties to the state and other tax payments.
SX051	Socio-Economic	Potential impacts on amenity (effects on tourism, loss of farming land, proximity to Stratford), water quality (environmental), noise, air quality, health and transport.
SX052	Socio-Economic	Continued spending on community initiatives.
SX053	Socio-Economic	Loss of skilled labour from other employment sections to mining.
SX098	Socio-Economic	Loss of retail and administrative personnel in Gloucester to the mine.
SX099	Socio-Economic	Additional "load" on emergency services and other community organisations to support the mine.
SX001	Surface Water	Insufficient site contained water storage capacity or insufficient freeboard leading to spill from contained water storages.

Uncontrolled after Printing

Printed: 6/06/12

Page B-2

www.spsolutions.com.au

Ref	Study Area	Issue Identified
		Inability of mine water management system to capture contaminated runoff leading to
SX002	SX002 Surface Water	increase in total suspended solids (TSS) Avondale Creek.
SX003	Surface Water	Discharge of potential TSS in runoff to sediment dams which spill to Avondale Creek.
SX004	Surface Water	Saline seepage from waste rock emplacements affecting Avondale Creek.
		Irrigation or dust suppression activities generating salt build-up which migrates through
SX005	Surface Water	waste rock emplacements as seepage and discharges to Avondale Creek.
SX006	Surface Water	Wind-borne migration of irrigation or dust suppression waters to Avondale Creek.
SX007	Surface Water	Potential for long-term spill of water with elevated salinity from final voids.
SX008	Surface Water	Long-term stability of upslope permanent diversions.
SX009	Surface Water	Long-term stability of unnamed tributary to Avondale Creek.
SX010	Surface Water	Long-term stability of final landform drainage.
SX011	Surface Water	Rupture in CHPP rejects pipeline and discharge of rejects to Avondale Creek.
		Rupture of water pipeline/s pumping mine water across tributary of Avondale Creek leading
SX012	Surface Water	to downstream discharge.
CV012	Curfe en Marten	Ability of planned Project water management system to be adapted to any planned future
SX013	Surface Water	modifications/expansions.
CV014	Curfe en Marten	Design of post-mine landform water management to be stable in the long-term, including
SX014	Surface water	upslope diversions.
SX015	Surface Water	Potential for spills from final voids.
SX016	Surface Water	Unexpected structural dam (water storage) failure.
SV017	Surface Water	Potential for exacerbation of flooding in Avondale Creek caused by mine landforms and road
SAULY SUITACE Wa	Surface water	crossing.
\$2018	Surface Water	Site water balance and management of surplus mine water on-site to achieve zero discharge
37010	Surface Water	of mine water.
\$2064	Surface Water	Potential for salt build-up in rehabilitation areas due to irrigation leading to potential
57004		limitation to long-term agricultural production/vegetation growth.
SX077	Surface Water	Geochemical characteristics (potentially acid-forming issues) for waste rock associated with
5/(077		the Stratford East Open Cut.
SX080	Surface Water	Stability of Stratford East and Avon North Open Cut pit walls and potential impact on upslope
		water diversions (i.e. geotechnical issues).
SX093	Surface Water	Potential for contamination of mine water resulting from use of CHPP reagents.
SX100	Surface Water	Hydrocarbon spill or effluent contaminated runoff into waterways.
		Impacts on the local road network associated with Project-related traffic, particularly
SX054	Transport	potential for cumulative effects with proposed Rocky Hill Coal Project and AGL Gloucester
		Gas Project.
SX055	Transport	Increased travel distances due to Wennam Cox Road/Bowens Road, Wheatleys Lane and
CVOEC	Turner aut	Bowens Road realignments and effects on road users during construction.
SX056	Transport	Effects of increased number of product coal trains on the rall network.
5X081	Transport	Closure of roads during blasting activities.
SX087	Transport	change in viewscape due to mining operations - leading to potential transport/driver
62000	Transport	allerition/safety related issues.
57022	Visual	On-site issues due to material transported to or from the Project.
57057	Visual	Energies of increase in neight of strational waste Emplacement on Visual Impacts.
57020	Visual	Potential for lighting impacts.
570/6	visual	Impacts of active mine activities.
SX086	Visual	change in viewscape due to mining operations (potentially significant from some off-site
		iucations).

About Your Report

Your report has been developed on the basis of your unique and specific requirements as understood by *SP Solutions* and only applies to the subject matter investigated. Your report should not be used or at a minimum it MUST be reviewed if there are any changes to the project and Key Assumptions. *SP Solutions* should be consulted to assess how factors that have changed subsequent to the date of the report affect the report's recommendations. *SP Solutions* cannot accept responsibility for problems that may occur due to changed factors if they are not consulted.

To avoid misuse of the information contained in the report it is recommended you confer with *SP Solutions* before passing your report on to another party who may not be familiar with the background and the purpose of the report. Your report should not be applied to any project other than that originally specified at the time the report was issued.

Costly problems can occur when other design professionals develop their plans based on misinterpretations of the report. To help avoid misinterpretations of the report, retain *SP Solutions* to work with other professionals who are affected by the report. Have *SP Solutions* explain the report implications to professional affected by them and then review plans and specifications produced to see how they have incorporated the report findings.

The report as a whole presents the findings of the site specific assessment and the report should not be copied in part of altered in any way.

SP Solutions is familiar with a variety of techniques and approaches that are used to identify and reduce a broad range of risks over the life of projects and operations. It is common that not all approaches will be necessarily dealt with in your report due to concepts proposed, recommendations by the team at the time or the scope determined by you. Speak with *SP Solutions* to develop alternative approaches to problems that may be of genuine benefit both in time and cost.

Reporting relies on:

- interpretation of factual information based on judgement and opinion;
- valid and factual inputs supplied by all third parties;
- key assumptions outside the influence of *SP Solutions*; and
- the result of any team based approach to review the topic and is therefore not the result of any one individual or organisation (including *SP Solutions*).

As such, any uncertainty may result in claims being lodged against consultants which are unfounded. To help prevent this problem, a number of clauses have been developed for use in contracts, reports and other documents. Responsibility clauses do not transfer appropriate liabilities from *SP Solutions* to other parties but are included to identify where *SP Solutions'* responsibilities begin and end. Their use is intended to help all parties involved to recognise their individual responsibilities. Read all documents from *SP Solutions* closely and do not hesitate to ask any questions that you may have.

No warranty of representation, either expressed or implied with respect to this document, its quality, accuracy, merchantability or fitness for a particular purpose is made. As a result, this document is provided "as is" and the reader assumes the entire risk as to its quality and accuracy.

In no event will *SP Solutions* be liable for direct, indirect, special, incidental or consequential damages resulting from any defect or inaccuracy in the document, even if advised of the possibility of such damages.

The warranty and remedies set forth above are exclusive and in lieu of all others, oral or written or implied. No employee, associate, contractor or other representative of *SP Solutions* is authorised to make any modification, extension or addition to this warranty.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of *SP Solutions*.